Glutamate receptor delta2 subunit in activity-dependent heterologous synaptic competition.

نویسندگان

  • Roberta Cesa
  • Laura Morando
  • Piergiorgio Strata
چکیده

In the adult cerebellum, the glutamate receptor delta2 subunit (GluRdelta2) is selectively targeted to the spines of the distal Purkinje cell dendrites, the spiny branchlets, that are innervated by the parallel fibers. Although GluRdelta2 has no known channel function, it is presumed to be involved in the formation and stabilization of these synapses. After block of electrical activity by tetrodotoxin, GluRdelta2s appear in the postsynaptic densities of the proximal dendritic spines, which then lose their contact with climbing fibers and become ectopically innervated by parallel fibers. This phenomenon suggests that climbing fiber activity prevents GluRdelta2 targeting to proximal dendrites and that GluRdelta2s admitted to the postsynaptic density of the spine cause withdrawal of the silent climbing fiber. To test this hypothesis, we studied the distribution of GluRdelta2s in the rat cerebellum by immunoelectron microscopy during the recovery period that follows removal of the electrical block, and during the sprouting of climbing fibers that follows subtotal deletion of the parent inferior olivary neurons by administration of the drug 3-acetylpyridine. We found that after removal of the electrical block, the climbing fibers reinnervate proximal spines that bear GluRdelta2s and these subunits are successively repressed. Similarly, after subtotal lesion of the inferior olive, reinnervation of denervated Purkinje cells occurs on spines bearing GluRdelta2s. Thus, GluRdelta2s are not responsible for displacing silent climbing fibers. We propose instead that GluRdelta2s are associated with climbing fiber-to-Purkinje cell synapses, during development or at early stages of climbing fiber regeneration or sprouting, and are downregulated during the process of synapse maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic density-93 interacts with the delta2 glutamate receptor subunit at parallel fiber synapses.

The glutamate receptor subunit delta2 has a unique distribution at the parallel fiber-Purkinje cell synapse of the cerebellum, which is developmentally regulated such that delta2 occurs at both parallel fiber synapses and climbing fiber synapses early in development but is restricted to parallel fiber synapses in adult animals. To identify proteins that might be involved in the trafficking or d...

متن کامل

Postsynaptic glutamate receptor delta family contributes to presynaptic terminal differentiation and establishment of synaptic transmission.

Synaptic adhesion molecules such as neuroligin are involved in synapse formation, whereas ionotropic transmitter receptors mediate fast synaptic transmission. In mutant mice deficient in the glutamate receptor delta2 subunit (delta2), the number of synapses between granule neurons (GNs) and a Purkinje neuron (PN) in the cerebellum is reduced. Here, we have examined the role of delta2 in synapse...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation.

The family of ionotropic glutamate receptors includes 2 subunits, delta1 and delta2, the physiological relevance of which remains poorly understood. Both are nonfunctional in heterologous expression systems, although the isolated, crystallized ligand binding domain (LBD) of delta2 is capable of binding D-serine. To investigate these seemingly contradictory observations we tested whether delta r...

متن کامل

Differential dependence of axo-dendritic and axo-somatic GABAergic synapses on GABAA receptors containing the alpha1 subunit in Purkinje cells.

Synapse formation and maintenance require extensive transsynaptic interactions involving multiple signal transduction pathways. In the cerebellum, Purkinje cells (PCs) receive GABAergic, axo-dendritic synapses from stellate cells and axo-somatic synapses from basket cells, both with GABAA receptors containing the alpha1 subunit. Here, we investigated the effects of a targeted deletion of the al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 6  شماره 

صفحات  -

تاریخ انتشار 2003